J-CTO score:
 Old-fashioned vs. Endless uploaded value

Kenya Nasu, MD, FACC
Toyohashi Heart Center, Japan
$>$ Several scoring systems have been developed to determine the likelihood of CTO PCI technical success and the potential difficulty of the procedure.
> The Japanese CTO (J-CTO) score is the most widely applied and accepted score used to assess complexity, which is based on the presence of certain angiographic characteristics.

J-CTO SCORE SHEET Venion 1.0 Variables and definitions Blunt

Entry with any tapered tip or dimple indicating or dimple indicating
direction of true lumen is direction of true lumen is
categorized as "tapered". Entry shape - Tapered (0) Blunt

Regardless of severity, 1 point
is assigned if any evident is assigned if any evident calcification is detected within
the CTO segment.

One point is assigned if bending> 45 degrees is detected within the CTO segment. Any tortuosity separated from the CTO segment is exoluded from this assesment.

Using good collateral images, try to measure "rue" distance of ocoutusion, which tends to be shorter than the first impression.

Re-try lesion

to this Re-try (200 attempt) lesion? (previously attompted but failed

[^0]\square No (0)
\square Yes (1)
point
Calcification
\square Absence (0) \square Presence (1) point

Bending $>45^{\circ}$ \square Absence (0) \square Presence (1) point

Ocel.Length
$\square<20 \mathrm{~mm}$ (0)
$\square \geq 20 \mathrm{~mm}$ (1)
point
Re-try lesion

Although this scoring system is usually considered as a model to predict the difficulty of CTO PCI , it is originally developed to predict successful guidewire crossing within 30 min .

Outcomes of Percutaneous Coronary Interventions for Chronic Total Occlusion Performed by Highly Experienced Japanese Specialists

The First Report From the Japanese CTO-PCI Expert Registry
Yoriyasu Suzuki, MD, ${ }^{a}$ Etsuo Tsuchikane, MD, PeD, ${ }^{\text {b }}$ Osamu Katoh, MD, ${ }^{\text {c }}$ Toshiya Muramatsu, MD, ${ }^{d}$ Makoto Muto, MD, ${ }^{e}$ Koichi Kishi, MD, ${ }^{\text {f }}$ Yuji Hamazaki, MD, ${ }^{\text {g }}$ Yuji Oikawa, MD, ${ }^{\text {h }}$ Tomohiro Kawasaki, MD, Atsunori Okamura, MD^{j}

J Am Coll Cardiol Intv 2017;10:2144-54

	$\begin{gathered} \text { overall } \\ (\mathrm{N}-2,596) \end{gathered}$	$\begin{gathered} \text { PAA } \\ (\mathrm{n}-1,872) \end{gathered}$	$\begin{gathered} \text { PRA } \\ (\mathrm{n}=724) \end{gathered}$	PAA vs. PRA p Value
Age, yrs	66.9 ± 10.9	66.8 ± 10.9	66.9 ± 10.7	0.863
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	24.7 ± 3.8	24.7 ± 3.8	24.6 ± 3.8	0.413
LVEF	54.8 ± 12.9	54.9 ± 12.9	54.6 ± 12.8	0.458
eGFR	64.9 ± 29.0	65.1 ± 30.2	64.3 ± 25.7	0.458
Male	86.1	85.1	88.4	0.018
Hypertension	78.5	78.0	80.8	0.12
Dystipidemia	7.5	76.1	82.1	0.001
Diabetes	44.9	44.9	45.8	0.35
Current smoking	54.4	58.0	62.3	0.057
OMI	51.0	51.7	51.3	0.895
Prior CABG	7.9	7.4	9.4	0.105
Prior PCI	63.2	61.8	67.5	0.007
Reattempt	20.6	15.1	34.8	<0.0001
Syntax score	15.9 ± 8.6	16.0 ± 8.4	15.6 ± 8.9	0.062
J-Cto score	2.0 ± 1.1	1.9 ± 1.1	2.4 ± 1.1	<0.0001
Number of diseased vessels				0.015
Single VD	49.1	50.6	45.1	
Double VD	30.1	28.8	33.5	
Triple VD	17.1	17.3	16.6	
LMT + multiple VD	3.8	3.3	4.9	
Target vessel				<0.0001
LAD	30.9	32.9	25.7	
LCX	17.1	20.4	8.6	
LMT	0.6	0.6	0.6	
RCA	51.5	46.2	65.2	
In-stent occlusion	13.6	16.9	5.1	<0.0001
Distal runoff $<3.0 \mathrm{~mm}$	65.0	64.9	67.2	0.274
CTO length $\geqslant 20 \mathrm{~mm}$	60.5	57.0	69.6	<0.0001
Side branch at proximal cap	34.1	34.8	32.0	0.181

Outcomes of Percutaneous Coronary Interventions for Chronic Total Occlusion Performed by Highly Experienced Japanese Specialists

The First Report From the Japanese CTO-PCI Expert Registry

nate GW crossing within 30 min was observed in only 54% of CTO lesion with J-CTO score 0 .

Single VD	49.1	50.6	In-stent occuusion	13.9	11.9	0.361
Double VD	30.1	28.8	Distal run off $<3.0 \mathrm{~mm}$	66.0	60.4	0.036
Triple VD	17.1	17.3	CTO length $\geq 20 \mathrm{~mm}$	58.8	71.6	<0.0001
LMT + multiple VD	3.8	3.3	Side branch at proximal cap	33.4	36.7	0.269
Target vessel			Collateral filling			0.008
			Contralateral	50.9	52.5	
LAD	30.9	32.9	1 Ipsilateral	13.7	9.4	
LCX	17.1	20.4	Both	35.3	36.0	
LMT	0.6	0.6	None	0.6	2.2	
RCA	51.5	46.2	Severe lesion cakification	5.4	183	<0.0001
In-stent occlusion	13.6	16.9	Proximal tortuosity			<0.0001
Distal runoff $<3.0 \mathrm{~mm}$	65.0	64.9	Straight	51.4	44.2	
CTO length $\geq 20 \mathrm{~mm}$	60.5	57.0	Mild	35.1	32.0	
Side branch at proximal cap	34.1	34.8	Severe	2.0	3.6	
atoratilina			Tortuosity of CTO lesion	22.8	39.9	<0.0001
			Morphology of proximal cap			0.01
			Blunt	23.7	23.7	
			No stump	18.7	23.0	
			Tapered/urnet	57.2	51.4	
			Values are $\% \propto$ mean ± 5 D. Abbreviations as in Table 1 .			

Chronic Total Occlusion Percutaneous Coronary Intervention:

 Evidence and ControversiesPeter Tajti, MD; Emmanouil S. Brilakis, MD, PhD
J Am Heart Assoc. 2018;7:e006732

Score Variables	HCTO Score ${ }^{\text {as }}$	C. Score ${ }^{34}$	$\begin{aligned} & \text { PROGRESS-cto } \\ & \text { Scorese } \end{aligned}$	ORA Score ${ }^{3 /}$	RECHARGE Soore ${ }^{30}$	Elis Score ${ }^{35}$
No. of cases	494	1657	781	1073	1253	456
End point	Guidewire crossing $<30 \mathrm{~min}$	Technical success	Technical success	Technical success	Tectrical suocess	Technical success
Age, y	-	-	-	$+(\geq 75)$	+ (-65)	-
Prior CABG	-	+	-	-	+	-
Prior failure	+	-	-	-	-	-
Proximal cap	+ (Blunt)	+ (Blunt)	+ (Ambiguous)	+ (0stial)	+	+ (Ambiguous, ostial)
Tortuosily	$+\left(>45^{\circ}\right.$ in lesion)	-	$\begin{aligned} & + \text { (Moderate,** } \\ & \text { proximal) } \end{aligned}$	-	+	+
Calcification	+	+ (Severe)	-	-	+	+
Lesion length	+ $¢ 20 \mathrm{~mm}$)	+ (-20 mm)	-	-	+	+
Target vessel	-	+ (Non-LAD)	+ (LCX)	-	-	+ (Poor distal target)
Collateral quality	-	-	+ (nterventional)	+ (Rentrop <2)	-	$+^{+}$
Other	-	Prior myocardial infarction	-	-	$\begin{aligned} & \text { BMI }>30 \mathrm{~kg} / \mathrm{m}^{2}, \\ & \text { nonproximal } \\ & \text { location } \end{aligned}$	Operator experience

A Clinical and Angiographic Scoring System to Predict the Probability of Successful First-Attempt Percutaneous Coronary Intervention in Patients With Total Chronic Coronary Occlusion

Giuseppe Alessandrino, MD, Bernard Chevalier, MD, Thierry Lefêvre, MD, Francesca Sanguineti, MD,
Philippe Garot, MD, Thierry Unterseeh, MD, Thomas Hovasse, MD, Marie-Claude Morice, MD, Yves Louvard, MD

J Am Coll Cardiol Intv 2017;10:2144-54

RESULTS The overall procedural success rate was 72.5%. Independent predictors of CTO-PCI failure were identified and included in the clinical and lesion-related score (CL-score) as follows. previous coronary artery bypass graft surgery +1.5 (odds ratio [OR]: $2.49,95 \%$ confidence interval [CI]: 1.56 to 3.96), ${ }^{2}$ previous myocardial infarction +1 (OR: $\overline{1.6,95 \%}$ Cl: 1.17 to 2.2 2 3 severe lesion calcification +2 (OR: $2.72,95 \% \mathrm{Cl}: 1.78$ to 4.16) 4 longer CTOs +1.5 ($\geq 20 \mathrm{~mm}$ OR: $2.04,95 \% \mathrm{Cl}: 1.54$ to 2.7), ${ }^{5}$ ion-left anterior descending coronary artery location +1 (OR: 1.56, $95 \% \mathrm{Cl}: 1.14$ to 2.15), an@blunt stump morphology +1 (OR: $1.39,95 \% \mathrm{Cl}: 1.05$ to 1.81). Score values of 0 to $1,>1$ and $<3, \geq 3$ and <5, and ≥ 5 identified subgroups at high, intermediate, low, and very low probability, respectively, of CTO-PCI success (derivation cohort: $84.9 \%, 74.9 \%, 58 \%$, and $31.9 \% ;$ p $<0,0001$; validation cohort: $88.3 \%, 73.1 \%, 59.4 \%$, and 46.2%; $\mathrm{p}<0.0001$).

A Clinical and Angiographic Scoring System to Predict the Probability of Successful First-Attempt Percutaneous Coronary Intervention in Patients With Total Chronic Coronary Occlusion

Giuseppe Alessandrino, MD, Bernard Chevalier, MD, Thierry Lefèvre, MD, Francesca Sanguineti, MD,
Philippe Garot, MD, Thien fIGURE 1 Procedural Success Rate According to cl-score Value in the Derivation and Validation Groups

RESULTS The o
and included in
surgery +1.5 (odi
$1.6,95 \% \mathrm{Cl}: 1.17$
OR: 2.04, 95% (
2.15), aneblunt :
and ≥ 5 identifie
(derivation cohol
$46.2 \% ; \mathrm{p}<0.0$

FIGURE 2 ROC Curve for Probability of Successful cto-PCI According to CL-Score and J-CTO Score
 out in the validation cohort demonstrated the superior performance of the CL-score. The area under the curve was 0.68 for the CL -score and 0.60 for the J -CTO score. CL -score dinical and lesion-related score; CTO-PCI = chronic total occlusion for percutaneous coronary intervention; J-CTO score $=$ Japanese chronic total occlusion score.

Development and Validation of a Novel (D) Scoring System for Predicting Technical Success of Chronic Total Occlusion Percutaneous Coronary Interventions
The PROGRESS CTO (Prospective Global Registry for the Study of Chronic Total Occlusion Intervention) Score

Georgios Christopoulos, MD,* David E. Kandzari, MD, + Robert W. Yeh, MD, MBA, \ddagger Farouc A. Jaffer, MD, PHD, \downarrow Dimitri Karmpaliotis, MD, 5 Michael R. Wyman, MD, ||haldoon Alaswad, MD, 5 William Lombardi, MD, 4
J. Aaron Grantham, MD,** Jeffrey Moses, MD,s Georgios Christakopoulos, MD,* Muhammad Nauman J. Tarar, MD,* Bavana V. Rangan, BDS, MPH,* Nicholas Lembo, MD, \uparrow Santiago Garcia, MD, † Daisha Cipher, PHD, \ddagger Craig A. Thompson, MD, MMSC, צs Subhash Banerjee, MD, Emmanouil S. Brilakis, MD, PHD*

J Am Coll Cardiol Intv 2016;9:1-9

Development and Validation of a Novel

 Scoring System for Predicting Technical Success of Chronic Total Occlusion Percutaneous Coronary InterventionsThe PROGRESS CTO (Prospective Global Registry for the Study of Chronic Total Occlusion Intervention) Score

Georgios Christopoulos, MD,* David E. Kandzari, MD, \dagger Robert W. Yeh, MD, MBA, \ddagger Farouc A. Jaffer, MD, PHD, \downarrow Dimitri Karmpaliotis, MD,5 Michael R. Wyman, MD,\| Khaldoon Alaswad, MD, $₹$ William Lombardi, MD, \#
J. Aaron Grantham, MD,** Jeffrey Moses, MD, Georgios Christakopoulos, MD,* Muhammad Nauman J. Tarar, MD,* Bava

FIGURE 4 Box Plot of Total Procedure Time in Each PROGRESS CTO Score Stratum in the Derivation and Validation Sets

Percutaneous Coronary Revascularization for Chronic Total Occlusions

A Novel Predictive Score of Technical Failure Using Advanced Technologies

Alfredo R. Galassi, MD, ${ }^{\text {a }}$ Marouane Boukhris, MD, ${ }^{\text {a,b }}$ Salvatore Azzarelli, MD, ${ }^{\text {a }}$ Marine Castaing, MSc, ${ }^{\text {a }}$ Francesco Marzà, MD, ${ }^{\text {a }}$ Salvatore D. Tomasello, MD^{a}

J Am Coll Cardiol Intv 2016;9:911-22

Percutaneous Coronary Revascularization for Chronic Total Occlusions

A Novel Predictive Score of Technical Failure
Using Advanced Technologies

Alfredo R. Galassi, MD, ${ }^{\text {a }}$ Marouane Boukhris, MD, ${ }^{\text {a,b }}$ Salvatore Azzarelli, MD, ${ }^{\text {a }}$ Marine Castaing, MSc, ${ }^{\text {a }}$
Fre figure 2 Impact of Jap anese Mutticenter cto Registry Score on Technical Success and Procedural Details

FIGURE 3 Recanalization Techniques and Guidewires

Percutaneous Coronary Revascularization for Chronic Total Occlusions

A Novel Predictive Score of Technical Failure
Using Advanced Technologies

Alfredo R. Galassi, MD, ${ }^{\text {a }}$ Marouane Boukhris, MD, ${ }^{\text {a,b }}$ Salvatore Azzarelli, MD, ${ }^{\text {a }}$ Marine Castaing, MSc, ${ }^{\text {a }}$
Fre figure 2 Impact of Japanese Multicenter cto Registry Score on Technical Success and Procedural Details
A

ORA score

1 Clinical variable		
Age	$\begin{aligned} & <75 \text { years } \\ & \geq 75 \text { years } \end{aligned}$	(0) (1)
		points
2 Angiographic variables		
Ostial location	No	(0)
	Yes	(1)
		points
(3) Collateral filling	Rentrop 0-1	(2)
	Rentrop 2-3	(0)
		points
Total		points

Easy

0 Intermediate 1 Difficult
2 Very difficult 3.4
so-

FIGURE 3 Recanalization Techniques and Guidewires
A

Towards a Contemporary, Comprehensive Scoring System for Determining Technical Outcomes of Hybrid Percutaneous Chronic Total Occlusion Treatment: The RECHARGE Score

Joren Maeremans, ${ }^{1,2}$ Msc ©, James C. Spratt, ${ }^{3}$ MD, Paul Knaapen, ${ }^{4}$ MD, PhD, Simon Walsh, ${ }^{5}$ mD, Pierfrancesco Agostoni, ${ }^{6,7}$ mD, PhD, William Wilson, ${ }^{8}$ mbss \odot, Alexandre Avran, ${ }^{9} \mathrm{mD}$, Benjamin Faurie, ${ }^{10} \mathrm{MD}$, PhD, Erwan Bressollette, ${ }^{11} \mathrm{MD}$,

Peter Kayaert, ${ }^{12}$ MD, Alan J. Bagnall, ${ }^{13,14}$ MD, PhD, Dave Smith, ${ }^{15}$ MD, Margaret B. McEntegart, ${ }^{16} \mathrm{MD}$, PhD, William H.T. Smith, ${ }^{17} \mathrm{MD}, \mathrm{BCHR}, \mathrm{PhD}$, FRCP, Paul Kelly, ${ }^{18}$ MD, John Irving, ${ }^{19}$ MD, Elliot J. Smith, ${ }^{20}$ MD, FRCP,

Julian W. Strange, ${ }^{21} \mathrm{MD}$, and Jo Dens, ${ }^{1,2^{*}} \mathrm{MD}$, PhD
Catheter Cardiovasc Interv. 2018;91:192-202

Predictors of Successful Hybrid-Approach Chronic Total Coronary Artery

Occlusion Stenting

An Improved Model With Novel Correlates
Stephen G. Ellis. MD. ${ }^{\text {a }}$ M. Nicholas Burke. MD. ${ }^{\text {b }}$ M. Bilal Murad. MD. ${ }^{c}$ John I. Graham. MD. ${ }^{d}$ Ramv Badawi. MD. ${ }^{\text {e }}$ Catelin Tom: Basic Model: Technical Success
for the CAPS

Extended Model: Technical Succes

FIGURE 5 Proposed Basic Scoring System
A
(1) Ambiguous Cap Proximal Cap (APC)?

APC Related Risk Factors

(4) Poor Distal Target 0
(5) Length $>10 \mathrm{~mm}$
(Ostial
Operator G

B

Extended

As above
0-4
(8) Moderate - severe calcium $\frac{0-1}{0-5}$

Chronic Total Occlusion Percutaneous Coronary Intervention:

 Evidence and ControversiesPeter Tajti, MD; Emmanouil S. Brilakis, MD, PhD
J Am Heart Assoc. 2018;7:e006732

Score Variables	H-CTO Score ${ }^{\text {as }}$	C. Score ${ }^{34}$	$\begin{aligned} & \text { PROGRESSCTO } \\ & \text { Score } \end{aligned}$	ORA Score ${ }^{\text {3/ }}$	RECHARGE Score ${ }^{30}$	Elis Score ${ }^{35}$
No. of cases	494	1657	781	1073	1253	456
End point	Guidewire crossing $<30 \mathrm{~min}$	Technical success	Tectnical success	Technical success	Tectnical success	Technical success
Age, y 2/6	-	-	-	$+(\geq 75)$	+ (-65)	-
Prior CABG 2/6	-	+	-	-	+	-
Prior failure 1/6	$+$	-	-	-	-	-
Proximal cap6/6	+ (Blunt)	+ (Blunt)	+ (Ambiguous)	+ (0stial)	+	+ (Ambiguous, ostial)
Tortuosity 4/6	$+\left(>45^{\circ}\right.$ in lesion)	-	+ (Moderate,* proximal)	-	$+$	+
Calcification 4/6	+	+ (Severe)	-	-	+	$+$
Lesion lengttr//6	+ -20 mm)	+ ¢20 mm)	-	-	+	+
Target vesse? /6	-	+ (Non-LAD)	+ (LCX)	-	-	+ (Poor distal target)
Collateral qualy 6	-	-	+ (nterventional)	+ (Rentrop <2)	-	$+^{+}$
Other	-	Prior myocardial infarction	-	-	BMI $>30 \mathrm{~kg} / \mathrm{m}^{2}$, nonproximal location	Operator experience

Summary

$>$ Study population and inclusion criteria of clinical studies are strongly associated with the results of scoring systems.

P Parameters in each scoring system are acceptable and understandable to predict procedural success. However, they have not been still perfect because the strategy in CTO PCI has dramatically changed over the years with growing expertise and procedural volume.
$>$ For beginners, CTO scores may be effective for scheduling procedure and preventing complication.
$>$ Dr. Katoh said he needed more than 200 parameters to predict the procedural success...

СТО Club
 The $19^{\text {th }}$ Seminar of Angioplasty of Chronic Total Occlusions

Dates June 15 Fri. - 16 Sat., 2018
 Venue WINC AICHI, Nagoya, Japan

[^0]: Catogory of difficulty (total point)
 \square easy (0) Intermediate (1)
 \square difficult (2) \square very difficult (≥ 3)

